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Abstract We consider the problem of finding the spectrum of an n×n matrix which
arises in the study of a certain model of long-range interactions in a one-dimensional
statistical mechanics system. Our analysis exhibits a curious resemblance of the suit-
ably normalized distribution of eigenvalues to the Marčenko–Pastur law in the limit
n → ∞.
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1 Introduction

The purpose of this note is the spectral analysis of certain matrices which arise in
the context of a particular toy model of contractile structures from cell biology [1].
Our emphasis here is on the mathematical analysis; still, our article would be incom-
plete if we did not try to convey to the reader an idea of how these matrices make
their appearance in a statistical mechanics system. We begin with that. By ‘contractile
structure’ we mean any subcellular arrangement of macromolecules which exerts a
measurable force when attached to an experimental apparatus (which might as well be
the cell membrane itself). The example we mostly had in mind is the contractile ring
which during the final stages of cytokinesis in many eukaryotes appears to help cleave
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a dividing cell in two [2–4]. The chemical composition of this ring suggests a mecha-
nism based on the myosin II-mediated interdigitating of actin filaments. We picture its
dynamics locally as that of a one-dimensional arrangement of actin filaments which
interact with their immediate neighbors along a random stretch of monomers at their
tips, like so:

For obvious reasons, we will call such an arrangement a ‘bundle’. The study of
bundles in 1 + ε dimensions, such as

would surely be more appealing, but they are out of our scope at present. Our question
is, what can one say about the contractility of a one-dimensional bundle from a ther-
modynamical point of view? The bundle will certainly tend to contract the stronger the
more the individual actin filaments tend to overlap, but shouldn’t compact structures
be entropically less favored? Leaving aside questions of bending energy or the like, it
soon becomes clear that the issue boils down to counting the number of bundle config-
urations which correspond to a given length of the bundle. Under the hypothesis that
each actin filament is composed of exactly n + 1 monomers, the respective formulas
then involve an n × n matrix of the kind

Mn(p) :=

⎛
⎜⎜⎜⎜⎜⎝

p p · · · p p
p2 p2 · · · p2 0
...

...
. . .

...
...

pn−1 pn−1 · · · 0 0
pn 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (1)

where p is a complex number �= 0. One might call such matrices ‘upper anti-tri-
agonal’. Our aim in this paper is to study their eigenvalues. The problem certainly
has some esthetic appeal; after all, the matrices (1) seem to carry a lot of structure,
yet do not seem to belong to any of the more popular classes of matrices generally
encountered in linear algebra [5]. One can see that they are irreducible, though: just
set p = 1 and interpret the resulting matrix as the adjacency matrix of a digraph.
Hence, the Perron-Frobenius Theorem applies, so that the thermodynamics of long
bundles should be dominated by their largest eigenvalue. For our analysis, we shall
find it convenient to write p =: q−2, and then to focus on the inverses of the matrices
Mn(q−2), normalized by qn+1:
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Mn(q) := 1

qn+1 M−1
n (q−2)

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 qn−1

0 0 · · · qn−3 −qn−1

...
...

. . .
...

...

0 q−(n−3) · · · 0 0
q−(n−1) −q−(n−3) · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (2)

Hence, if λ is an eigenvalue of Mn(q), then q−n−1λ−1 = p(n+1)/2λ−1 is an eigen-
value of Mn(p). It is also clear that any eigenvalue of Mn(q) is an eigenvalue of
Mn(−q) if n is odd, and of −Mn(−q) if n is even. Since we would expect both
cases to behave identically as n → ∞, the spectrum of a large matrix Mn should be
essentially point symmetric with respect to the origin in the complex plane. Indeed,
consider the function x �→ 1 + 2qx + q2 from the reals into the complex numbers.
Since its image is evidently a straight line somewhere in the complex plane, we can
choose a branch of the square root such that the image of either of the two mappings

f +
q , f −

q : [−1, 1] �→ C ,

f +
q (x) := √

1 + 2qx + q2 , f −
q (x) := − f +

q (x)

(3)

is connected. It then turns out that the majority of eigenvalues of a large matrix Mn

tends to concentrate around the set f +
q

([−1, 1])∪ f −
q

([−1, 1]). Furthermore, it will do
so indiscriminately between the two components of the set, although not necessarily
so within either of the two: the ‘central’ portions of each set will be far less crowded
than the regions closer to the tips. To make this more precise, we need to recall the def-
inition of the push-forward of a measure: given a measure ρ on a (measurable) space
(�,F), and a measurable function f from � to another measurable space (�′,F ′),
we call the push-forward of the measure ρ under the function f the measure f #ρ on
(�′,F ′) for which f #ρ(A′) = ρ

(
f −1(A′)

)
for every A′ ∈ F ′. Let us choose for ρ a

measure on the interval [−1, 1] with density

dρ(x)

dx
= 1

2π
√

1 − x2
. (4)

Except for the factor 1
2 , this is just a shifted version of the familiar arcsine distribution.

We now have the following

Theorem Let

ρn := 1

n

n∑
k=1

δλk (5)

denote the empirical distribution of eigenvalues of the n ×n matrix Mn(q) in Eq. (2),
and let f +

q and f −
q be as defined in (3). Then limn→∞ ρn =: ρq exists in the sense of
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weak convergence, and decomposes into the push-forwards f +
q #ρ and f −

q #ρ of the
distribution (4) under each of the two mappings f +

q and f −
q .

In particular, ρq cannot have a density with respect to complex Lebesgue measure.
However, we have as a direct consequence of the theorem and the definition of a
push-forward that, say,

∫

f +
q

(
[−1,x]

)
d( f +

q #ρ)(z) =
x∫

−1

dρ(x) ,

which after differentiation with respect to x gives

q√
1 + 2qx + q2

d( f +
q #ρ)(z)

dz

∣∣∣∣∣
z= f +

q (x)

= 1

2π
√

1 − x2
,

or

d( f +
q #ρ)(z)

dz
= z

π

√(
(q + 1)2 − z2

)(
z2 − (q − 1)2

) . (6)

One can call the expression (6) the density of ρq in this sense. There is no reason why
this quantity should be non-negative, or even real; it only relates to the measure ρq

through a certain way of integration. Its similarity with the Marčenko–Pastur law [6]
cannot be overlooked, yet we do not have an intuitive explanation for this. Rather, we
prove our result by direct calculation.

2 Proof of the theorem

Our strategy of proof will be to show that the moment-generating functions of the
empirical measures defined in (5) converge to the moment-generating function of the
limiting distribution ρq . We calculate the latter first: by point symmetry of ρq with
respect to 0, its odd moments are zero, whereas we have for its even moments

μ2r =
∫

f +
q

(
[−1,1]

)
z2r d( f +

q #ρ)(z) +
∫

f −
q

(
[−1,1]

)
z2r d( f −

q #ρ)(z)

=
1∫

−1

(1 + 2qx + q2)r

π
√

1 − x2
dx = 1

π

π∫

0

(1 + 2q cos ϕ + q2)r dϕ ≤ (1 + |q|)2r ,

again by definition of the push-forward. Hence, we have for the moment-generating
function,
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mq(λ) :=
∞∑

r=0

μ2rλ
2r = 1

π

π∫

0

1

1 − λ2(1 + 2q cos ϕ + q2)
dϕ

= 1

π
(
1 − (1 + q2)λ2

)
π∫

0

1

1 − 2qλ2 cos ϕ

1 − (1 + q2)λ2

dϕ

for any complex λ for which |λ| < 1 + |q|. But

1

π

π∫

0

cos2r ϕ dϕ = 1

4r

(
2r

r

)
= (−1)r

(−1/2

r

)
,

which after a little bit of algebra gives

mq(λ) = 1√
1 − 2(q2 + 1)λ2 + (q2 − 1)2λ4

. (7)

We now calculate the moment-generating functions of the empirical measures (5). We
start by working out the characteristic polynomial

Dn :=: Dn(λ, q) :=

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 · · · 0 qn−1

0 −λ · · · qn−3 −qn−1

...
...

. . .
...

...

0 q−(n−3) · · · −λ 0
q−(n−1) −q−(n−3) · · · 0 −λ

∣∣∣∣∣∣∣∣∣∣∣

.

Laplace expansion with respect to the first row yields

Dn = −λ

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 · · · qn−3 −qn−1

0 −λ · · · −qn−3 0
...

...
. . .

...
...

q−(n−3) −q−(n−5) · · · −λ 0
−q−(n−3) 0 · · · 0 −λ

∣∣∣∣∣∣∣∣∣∣∣

+ (−q)n−1

∣∣∣∣∣∣∣∣∣∣∣

0 −λ · · · 0 qn−3

0 0 · · · qn−5 −qn−3

...
...

. . .
...

...

0 q−(n−3) · · · 0 −λ

q−(n−1) −q−(n−3) · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣

.

We ‘rotate’ the first determinant by 180◦—that is to say, we interchange the kth and
(n − k)th rows and columns for k = 1, 2, . . . , �n/2, and then divide the result by
(−q)n−1. This amounts to dividing each entry in the determinant by −q, hence

123



1416 J Math Chem (2012) 50:1411–1419

∣∣∣∣∣∣∣∣∣∣∣

λ/q 0 · · · 0 q−(n−2)

0 λ/q · · · q−(n−4) −q−(n−2)

...
...

. . .
...

...

0 qn−4 · · · λ/q 0
qn−2 −qn−4 · · · 0 λ/q

∣∣∣∣∣∣∣∣∣∣∣

= Dn−1(−λ/q, 1/q) .

Then we Laplace expand the second determinant with respect to the final row. Overall,

− Dn(λ, q) = (−q)n−1λDn−1(−λ/q, 1/q) + Dn−2(λ, q) , (8)

which can be iterated if one treats the odd and even cases separately; for brevity, we
focus on n = 2m + 1 odd, and obtain

D2m+1

q2m
= λ2 − 1

q2

D2m−1

q2m−2 − (−1)m

(
λ + λ2

q2

m−2∑
k=0

(−1)k D2k+1

q2k

)
. (9)

This is a linear recurrence (in the unknowns q−2mD2m+1) with uniformly bounded
coefficients, and therefore cannot grow too fast. In particular, we can assume that the
generating function

g(z) :=
∞∑

m=1

D2m+1z2m+1

has a non-zero radius of convergence. It is now an easy matter to deduce from (9) that

g(z) = q2z3 − (λ − 1)z

q2(z4 + z2) − (λ2 − 1)z2 + 1
,

and then, making use of (8), that

η(z) :=
∞∑

m=0

D2m z2m = 1 + (q2 + qλ)z2

q2(z4 + z2) − (λ2 − 1)z2 + 1
.

(we agree on D0 = 1 for convenience). To proceed, we write λ in the form

λ2 = q2 + q

(
ν + 1

ν

)
+ 1 (10)

for some complex ν �= 0, where for definiteness we can require |ν| ≥ 1. The denom-
inator of both generating functions now factors into (qz2 − ν)(qz2 − 1/ν), and we
obtain

g(z) = ν
q2z3 − (λ − 1)z

ν2 − 1

∞∑
m=0

qm(νm+1 − ν−m−1)z2m , (11)
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and a similar formula for η(z). It follows that λ is an eigenvalue1 of M2m+1 if and
only if

ν

ν2 − 1

(
qm+1(νm − ν−m) − (λ − 1)qm(νm+1 − ν−m−1)

) = 0 . (12)

We quickly check whether ν = ±1 is a solution. If so, we find from l’Hôpital that

λ = 1 ± q
m

m + 1
,

whereas (10) implies λ2 = (1 ± q)2. This is a contradiction for m < ∞. We also
deduce from (12) that if νm+1 − ν−m−1 = 0, then certainly νm − ν−m = 0 as well, so
that νm+1 − ν−m−1 = νm−1(ν2 − 1) = 0 or ν = ±1 again, which we have just ruled
out. Thus we can safely write

λ = 1 + q
νm − ν−m

νm+1 − ν−m−1 = 1 + q

ν
− q(ν − ν−1)

∞∑
k=1

ν−2k(m+1) , (13)

provided, of course, that |ν| > 1. We now solve our problem for q = 1: in this case,
we immediately find from (10) that ±λ = √

ν + 1/
√

ν, and therefore

(1 − √
ν − 1/

√
ν)(ν2m+2 − 1) + ν2m+1 − ν

= (ν2m+1√ν + 1)(1 − √
ν + ν − ν

√
ν)√

ν
= 0 .

The second factor here is zero for
√

ν = 1, i , and −i , all of which would result in
ν = ±1, and we have already seen that this is impossible. Hence

√
ν is a 4m + 3rd

root of −1, and we finally arrive at

λk = (−1)n+12 cos
(2k − 1)π

2n + 1
, k = 1, 2, . . . , n (14)

for a matrix of size n = 2m + 1. (Incidentally, this formula holds for even values of
n as well.) There seems to be little hope of solving Eqs. (10) and (13) in terms of ν

for arbitrary values of q, but we still can use them to obtain valuable information on
the magnitude of the eigenvalues: if |ν| = 1, then λ2 = 1 + 2q cos ϕ + q2 for some
ϕ ∈ [0, 2π), by Eq. (10). Or, if |ν| > 1, then λ = 1 + q/ν + O(ν−n), by Eq. (13).
Either way, it now follows that |λ| is at most O(1 +|q|) in order of magnitude, so that
λnDn(λ−1, q) is non-zero for λ in a sufficiently small neighbourhood of 0. But this
implies that log

(
λnDn(λ−1, q)

)
is analytic there, and we can write

1 We denote by λ a generic eigenvalue as well as the indeterminate in the characteristic polynomial of a
matrix.
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− ∂

∂λ
log

(
λnDn(λ

−1, q)
) =

n∑
k=1

λk

1 − λkλ
=

∞∑
r=1

(
n∑

k=1

λr
k

)
λr−1 .

The term in brackets is n times the r th moment of the empirical measure ρn in (5),
which gives

mn(λ) := 1

n

∞∑
r=0

μrλ
r = −λ

∂

∂λ
log n

√
Dn(λ−1, q)

for the corresponding moment generating function. We are ‘weakly’ done if we can
show that limn→∞ mn(λ) agrees with (7). This is straightforward: because everything
is analytic, we can interchange differentiation and passage to the limit and only need
to calculate limn→∞ n

√
Dn(λ−1, q). Now (10) implies that |ν| �= 1 for λ large enough,

so that limn→∞ n
√

Dn(λ−1, q) is just the square root of the larger2 of ν and ν−1 in
Eq. (11), hence

lim
n→∞ mn(λ) = −λ

2

∂

∂λ

(
λ−2 − q2 − 1 + √

λ−4 − 2(q2 + 1)λ−2 + (q2 − 1)2

2q

)

= 1√
1 − 2(q2 + 1)λ2 + (q2 − 1)2λ4

.

This was to be proved. �

3 An exceptional eigenvalue

It is clear that our analysis of the matrices Mn might have missed a finite num-
ber of eigenvalues of absolute value less than 1. This is somewhat unfortunate, as
numerical analysis and a closer look at the matrices Mn(p) for |p| < 1 suggest the
presence of an eigenvalue of size approximately p(1 − p)−1—indeed, the vector
(1, p, p2, · · · , pn−1)� is almost a corresponding eigenvector. Since this is a reason-
able candidate for the largest eigenvalue of Mn(p) when p is a Boltzmann weight, its
study is of considerable interest for the statistical mechanics model [7]. To begin, we
first observe that if the matrix Mn(p) has an eigenvalue of size close to p(1− p)−1 (or
to any value which does not depend on the size of the matrix), then the matrix Mn(q)

will have an eigenvalue of size comparable to q−n . Moreover, the system of Eqs. (10)
and (13) can readily be solved in terms of q (or q−1, which under |q| > 1 is of greater
interest to us) for any given value of ν. In fact,

2 More precisely, the one of larger absolute value.
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q−1 =

(
νm − ν−m

νm+1 − ν−m−1

)2

− 1

ν + ν−1 − 2
νm − ν−m

νm+1 − ν−m−1

= −ν−1 + O(ν−3) ,

so that q−1 is given by a power series in ν−1 with zero constant term and a non-zero
coefficient of ν−1. The implicit function theorem then implies (the catchphrase here
might be Lagrange inversion) that ν−1, and therefore λ, can be represented as a Laurent
series in q−1. We calculate its first few terms by means of successive approximation:
setting λ = 0 in (10) yields ν = −q, which by (13) gives

λ = (1 − q−2)
(
q−2m + O(q−4m−2)

)
.

If now we insert this into (10), we obtain ν = −q + (1 − q−2)q−4m−3 + O(q−8m−5),
and then again, from (13),

λ = (1 − q−2)
(

q−2m + (
2m + 1 − (2m + 2)q−2)q−6m−2

)
+ O(q−10m−4) .

Hence, the approximation p(1 − p)−1 for the largest eigenvalue of Mn(p) is correct
up to terms of order pn+1. In particular, the eigenvalue remains finite as n → ∞,
whereas (14) gives an essentially linear growth

1

2 cos

(
nπ

2n + 1

) ∼ 2n + 1

π

of the largest eigenvalue of Mn(1).
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